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A COMPUTATIONAL MODEL OF SELECTION BY CONSEQUENCES

J. J MCDOWELL

EMORY UNIVERSITY

Darwinian selection by consequences was instantiated in a computational model that consisted of a
repertoire of behaviors undergoing selection, reproduction, and mutation over many generations.
The model in effect created a digital organism that emitted behavior continuously. The behavior of
this digital organism was studied in three series of computational experiments that arranged rein-
forcement according to random-interval (RI) schedules. The quantitative features of the model were
varied over wide ranges in these experiments, and many of the qualitative features of the model also
were varied. The digital organism consistently showed a hyperbolic relation between response and
reinforcement rates, and this hyperbolic description of the data was consistently better than the
description provided by other, similar, function forms. In addition, the parameters of the hyperbola
varied systematically with the quantitative, and some of the qualitative, properties of the model in
ways that were consistent with findings from biological organisms. These results suggest that the
material events responsible for an organism’s responding on RI schedules are computationally equiv-
alent to Darwinian selection by consequences. They also suggest that the computational model de-
veloped here is worth pursuing further as a possible dynamic account of behavior.

Key words: computational modeling, mathematical modeling, selection by consequences, quanti-
tative law of effect, random interval schedules

A fairly successful mathematical mechanics,
or descriptive account, of operant behavior
has been under development in behavior
analysis for many years. A mechanics of be-
havior tells how behavioral and environmental
variables are related to each other. Part of this
mechanics is the well-known quantitative law
of effect,

kr
R 5 , (1)

r 1 re

where R represents response rate, r repre-
sents reinforcement rate, and k and re are pa-
rameters of the equation (Herrnstein, 1970).
The quantitative law of effect tells how be-
havior is regulated by reinforcement. The hy-
perbolic form of this expression has been
studied extensively, and there is essentially no
doubt that the relation between response and
reinforcement rates is hyperbolic (McDowell,
1988).

The development of a mathematical dynam-
ics, or causal account, of operant behavior has
also been pursued, but with less success. A
dynamics of behavior tells why behavioral and
environmental variables are related in the
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way they are. Different types of dynamic ac-
counts have been proposed, including ac-
counts based on maximization or optimality
principles (Rachlin, Battalio, Kagel, & Green,
1981), and accounts based on melioration
(Herrnstein, 1982; Vaughan, 1981), to take
two prominent examples. These approaches
typically use analytic mathematical methods
to obtain a mechanical outcome, like Equa-
tion 1, from a statement of a dynamic prin-
ciple or theory. For example, a maximization
theory might be stated in terms of a utility
function that expresses utility or benefit to
the organism as a function of independent
variables like reinforcement rate and re-
sponse cost. The organism is presumed to
maximize utility, and hence the maximum of
the utility function is taken to be the me-
chanical prediction of the dynamic account.
This maximum is typically an equation that
expresses a property of behavior, such as re-
sponse rate, in terms of independent vari-
ables of interest. The various dynamic ac-
counts of operant behavior that have been
proposed remain controversial, and none has
received wide acceptance.

A different kind of causal principle that has
been proposed for operant behavior is selec-
tion by consequences (Skinner, 1981). This is
a different kind of principle because it does
not entail an end state to which behavior is
presumed to be directed (like maximum util-
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ity in a maximization account, or equal local
rates of reinforcement in melioration), and
because it operates at the low level of individ-
ual behaviors. A useful dynamic account
based on selection by consequences would
specify the rules governing the interaction
between behavior and its consequences, and
these rules would cause some behaviors to be
retained over time while permitting others to
die out. In this type of dynamic account there
is no end state or high-level condition that
behavior must satisfy; there are only the low-
level rules of selection. Behavior is simply
built up by these rules, unconstrained by oth-
er conditions. One can conceive of behavior
in the typical dynamic account as being
pulled to a mechanical outcome by the end-
state requirement. In an account based on se-
lection by consequences, on the other hand,
one can conceive of behavior as being
pushed to a mechanical outcome by rules of
selection. Because of these differences, selec-
tion by consequences cannot readily be in-
stantiated in analytic mathematical form.
However, computational approaches, which
are a contemporary alternative to analytic
mathematics, can be used to develop a dy-
namic account based on selection by conse-
quences.

Computational mathematics has been ap-
plied, sometimes successfully, to problems in
a range of scientific disciplines (Bentley,
2002; Wolfram, 2002a, 2002b), including be-
havior analysis (e.g., Donahoe, Burgos, &
Palmer, 1993; Shimp, 1992). In a computa-
tional account, the high-level, or complex,
behavior of a system is generated by repeat-
edly applying simple rules to low-level prop-
erties of the system. The high-level behavior
of the system is then compared with obser-
vation. An important distinguishing feature
of a computational account is that the sys-
tem’s high-level behavior cannot be predicted
by examining or mathematically manipulat-
ing the low-level rules. Instead, the rules must
be applied in a computational experiment to
discover the complex outcome. Because
there is no analytic mathematical connection
between the low-level rules and the complex
behavior they produce, the latter is some-
times said to be an emergent property of the
rules that constitute the computational ac-
count.

There have been extensive theoretical and

conceptual discussions of selection by conse-
quences in the behavioral literature (e.g.,
Glenn & Field, 1994; Glenn & Madden, 1995;
Hull, Langman, & Glenn, 2001; Skinner,
1984; Smith, 1983). Donahoe and his col-
leagues (Donahoe et al., 1993; Donahoe &
Palmer, 1994; Donahoe, Palmer, & Burgos,
1997) have supplemented this discussion with
neural network models that implement a
form of selection, namely, selection of neural
pathways. These models have not yet been de-
veloped extensively, and they typically have
been applied to basic conditioning phenom-
ena such as acquisition, extinction, and block-
ing rather than to higher-order quantitative
relations like Equation 1. Moreover, Donahoe
and his colleagues have used these connec-
tionist models principally as conceptual tools
to illustrate the plausibility of neural mecha-
nisms for conditioning and learning phe-
nomena, rather than as comprehensive math-
ematical models of those phenomena. This is
also a characteristic of much neural network
research in cognitive psychology (e.g., Elman
et al., 1996).

The purpose of this article is to introduce
a computational dynamics of behavior that in-
stantiates Darwinian selection by consequenc-
es in a straightforward way. Computational
experiments will show that a hyperbolic rela-
tion between response and reinforcement
rates, namely, Equation 1, is an emergent
property of this account.

THE EVOLUTIONARY ALGORITHM

It will be helpful to begin by describing the
evolutionary algorithm in general terms. The
algorithm begins with a population of behav-
iors sorted into classes. The population can
be conceived of as an organism’s behavioral
repertoire at a moment of time, ti. Let the
number of individual behaviors falling into
each class determine the probability that an
instance of that class will be emitted at time,
ti. If the emitted behavior is selected (i.e., re-
inforced), then the fitness of each behavior
in the population must be calculated, where
fitness is determined by the similarity of each
behavior to the reinforced behavior. Parent
behaviors that will produce the next genera-
tion are then chosen on the basis of their fit-
ness such that, by and large, fitter individuals
are more likely to be chosen as parents. The
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parent behaviors produce a new generation
of behaviors at time, ti11, and the new gen-
eration undergoes a small amount of random
mutation. Because relatively fit parents pro-
duce the new generation, and because par-
ents tend to produce child behaviors that re-
semble themselves, the new generation is
likely to contain more members of the class
of behavior that was reinforced than the old
generation, and hence the likelihood that a
behavior in that class will be emitted again is
increased. Based on the new probabilities for
the population of behaviors at time, ti11, the
organism emits an instance of one of the clas-
ses of behavior at that moment. The process
of selection, reproduction, and mutation is
then repeated. If at any time, ti, an emitted
behavior is not reinforced, then parent be-
haviors may be chosen without regard to fit-
ness. These parents then produce the next
generation of behaviors, which undergoes a
small amount of random mutation. This gen-
eral algorithm can be used to create a digital
organism that emits a behavior at each mo-
ment of time.

IMPLEMENTING THE EVOLUTIONARY
ALGORITHM

A working implementation of the evolu-
tionary algorithm consists of five compo-
nents: (a) a digital organism, (b) a method
of calculating fitness, (c) a method of choos-
ing parents for mating based on fitness, (d)
a means of reproduction whereby parent be-
haviors produce child behaviors that resem-
ble themselves, and (e) a method for intro-
ducing mutation into the population of
behaviors that constitute the organism’s rep-
ertoire.

The Organism

Let a digital organism’s repertoire consist
of 100 behaviors, each of which is defined by
an integer from 0 through 1023. Evidently,
there are 1024 different behaviors that can
appear in this repertoire, although only 100
are present at any one moment. Both the size
of the repertoire (viz., 100 behaviors) and the
range of integers used to define its members
are entirely arbitrary. It may be helpful to
think of the repertoire, or population of be-
haviors, as a bar chart consisting of 100 bars,
in which the height of each bar defines the

behavior. Behavioral classes are obtained by
partitioning the possible range of integer val-
ues that define the individual behaviors. For
example, four behavioral classes might be de-
fined such that the first consists of the integer
values from 0 through 255, the second con-
sists of values from 256 through 511, the third
consists of values from 512 through 767, and
the fourth consists of values from 768
through 1023. In this example, each behav-
ioral class contains 256 possible individual be-
haviors.

Now suppose 100 behaviors are selected at
random from the 1024 possible individual be-
haviors. Each of these behaviors will fall into
one of the four behavioral classes. The pro-
portion of behaviors that fall into a specific
class represents the probability that a behav-
ior in that class will be emitted. Evidently,
these probabilities sum to one, and in our
example, the probabilities will be roughly
equal. If another set of 100 behaviors is cho-
sen randomly, the probabilities again will be
roughly equal, and so on. Each time a ran-
dom set of 100 behaviors is chosen, a behav-
ior from one of the four behavioral classes
will be emitted, based on their probabilities.
In our example, the frequencies of behavioral
emissions from the four classes will be ap-
proximately equal over time. The number of
possible individual behaviors in each class
thus defines a base probability of emission for
that class. In the example used here, the base
probability is 256/1024 or 0.25 for each class.
This is an operant level. The base probabili-
ties of course need not be equal. For exam-
ple, we may define four behavioral classes in
such a way that 41 individual behaviors fall
into each of two classes, and 471 individual
behaviors fall into each of the other two clas-
ses, for a total of 1024 possible individual be-
haviors. In this case the base probabilities of
two classes are 41/1024 or 0.04, and the base
probabilities of the other two classes are 471/
1024 or 0.46. Evidently, the operant levels for
the former two classes are much lower than
for the latter two classes.

Individual behaviors in the organism’s rep-
ertoire also have what might be referred to
as a genotype. The integer value of each be-
havior can be considered the phenotypic ex-
pression of a 10-digit string of 0s and 1s,
which is the behavior’s genotype. This string
is the binary representation of the integer val-
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ue. For example, a behavior with an integer
value of 235 can be viewed as expressing its
genotype of 0011101011, which is the 10-digit
binary representation of 235. Ten-digit binary
numbers can range from 0000000000 to
1111111111, which translates into a range of
0 to 1023 in base-10 integers. Interestingly,
one can view a behavior’s genotype as con-
sisting of a single digital chromosome that is
made up of 10 genes (the ten characters in
the string of 0s and 1s), each of which has
two alleles (0 and 1).

Fitness

When a behavior is selected, or reinforced,
it is identified as ‘‘fit’’ with respect to envi-
ronmental conditions. The other behaviors in
the repertoire can be considered more or less
fit depending on how similar they are to the
selected behavior. If there are four behavioral
classes, the first one consisting of integer val-
ues from 0 through 40, and an instance of
that class has been selected, one could define
a fitness criterion as the middle value of the
class, which in this example is 20. The other
behaviors in the population are fitter the clos-
er they are to this criterion value. The fitness
of each behavior can be defined as the ab-
solute value of the difference between the cri-
terion value and the integer that defines the
behavior. Smaller absolute differences corre-
spond to fitter individuals. Fitness defined in
this way will be referred to as midpoint fitness.
Of course, there are other ways to define fit-
ness. For example, a specific behavior in the
selected class could be chosen probabilisti-
cally as the fitness criterion, using the relative
frequency of each behavior in the selected
class as the probability that it will be chosen
as the criterion. The fitness of each behavior
in the repertoire would then be calculated as
before, except that the specific behavior cho-
sen from the class, rather than the midpoint
of the class, would serve as the fitness crite-
rion. Fitness defined in this way will be re-
ferred to as specific individual fitness.

Parents

Once a behavior has been selected and the
fitness of each behavior in the population has
been calculated, parent behaviors must be
chosen for mating on the basis of their fit-
ness. Fitter behaviors should be more likely
to be chosen for mating than less fit behav-

iors. The relation between a behavior’s fitness
and its probability of being chosen as a par-
ent will be referred to as a parental fitness func-
tion. For example, one could define a paren-
tal fitness function such that all behaviors
with fitnesses less than or equal to a specific
value, a, are equally likely to be chosen for
mating. Remember that smaller fitness values
indicate fitter behaviors. This is a uniform pa-
rental fitness function, in which the proba-
bility density associated with fitness values be-
tween 0 and a is

1
p(x) 5 for 0 # x # a. (2)

a

For a uniform parental fitness function, be-
haviors with fitnesses greater than a have no
chance of being selected for mating. The
probability of a parent being at least as fit as
some value, x, is obtained by integrating
Equation 2 from 0 to x, which yields the cu-
mulative density function

1
P(x) 5 x. (3)

a

And finally, for a uniform parental fitness
function, the mean fitness of behaviors cho-
sen for mating is

a a 1 1
m 5 xp(x) dx 5 x dx 5 a. (4)E E a 20 0

To implement a parental fitness function
computationally, it is usually necessary to
write it as a probability density function (e.g.,
Equation 2), and to calculate its cumulative
density function and mean (e.g., Equations 3
and 4). In principle, any function form that
associates higher probabilities of being cho-
sen for mating with lower (and hence better)
fitness values can serve as a parental fitness
function. A method for obtaining a probabil-
ity density function, cumulative density func-
tion, and mean for any appropriate function
form is described in the Appendix.

Given a parental fitness function, a father
behavior can be selected by drawing a fitness
value at random from the parental fitness
function and then searching the population
of behaviors for an individual with that fit-
ness. If a qualified individual is not found,
then another fitness value is drawn at ran-
dom, and the population of behaviors is
searched again, and so on, until a qualified
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father behavior is found. A mother behavior
may be obtained in the same way, with the
constraint that it must be distinct from the
father behavior.

Reproduction

A child behavior can be produced from two
parents by building a 10-digit string of 0s and
1s from the parents’ genotypes. The digit at
each location in the child’s string comes from
the same location in the digital chromosome
of either the father or the mother, with a
probability of 0.5 that it comes from a specific
parent. Hence the first digit in the string will
be either the father’s first digit or the moth-
er’s first digit; the second digit in the string
will be either the father’s second digit or the
mother’s second digit, and so on. The child’s
phenotype is the base-10 representation of
the binary number defined by the string of
0s and 1s. The process of choosing mates that
then produce a child behavior continues un-
til the new generation is populated with 100
behaviors. Reproduction that occurs in this
way will be referred to as bitwise reproduction.
Notice that a given parent behavior may be
selected for mating more than once, and con-
sequently may have more than one mate and
produce more than one child behavior.

Other methods of reproduction, of course,
can be implemented. For example, one
might slice the parental chromosomes at a
random location, combine the left piece of
the father’s chromosome with the right piece
of the mother’s, and the right piece of the
father’s chromosome with the left piece of
the mother’s, and then take one of these
combinations at random as the child. Repro-
duction that occurs in this way will be re-
ferred to as slicewise reproduction.

Mutation

Once a new generation of behaviors has
been produced, it undergoes random muta-
tion. A specific percentage of individual be-
haviors selected at random from the popula-
tion become mutants, that is, their integer
values change. This percentage may be less
than 1, in which case mutation will not occur
in every generation of 100 behaviors.

One way to obtain the integer value of a
mutant is to assume that the original integer
value of the behavior selected for mutation is
the mean of a Gaussian distribution of inte-

ger values with a specific standard deviation.
The integer value of the mutant is then se-
lected at random from this distribution. This
method of mutation will be referred to as
Gaussian mutation. When implementing
Gaussian mutation it is necessary to specify
the percentage of individual behaviors that
will undergo mutation and the standard de-
viation of the Gaussian distribution used to
obtain the integer value of the mutant.

Another way to obtain the integer value of
a mutant is to flip, or change, exactly one of
the bits of the behavior selected for mutation.
A bit location is selected at random from the
behavior’s digital chromosome and the bit at
that location is flipped from 0 to 1 or 1 to 0.
This method of mutation will be referred to
as bit-flip mutation. When implementing bit-
flip mutation it is only necessary to specify
the percentage of individual behaviors that
will undergo mutation.

Yet another way to obtain the integer value
of a mutant is to choose one randomly from
the range of possible behaviors (0 through
1023), and simply replace the integer value
of the behavior selected for mutation with the
randomly selected value. This method of mu-
tation will be referred to as random individual
mutation. When implementing this mutation
method it is only necessary to specify the per-
centage of behaviors that will undergo mu-
tation.

For the experiments reported in this arti-
cle, the five components of the evolutionary
algorithm were implemented in a computer
program that created a digital organism. The
digital organism generated behavior accord-
ing to the rules of the evolutionary algorithm
described above and worked on random-in-
terval (RI) schedules in three series of com-
putational experiments. In the first series of
experiments (Phase 1), the behavior of the
digital organism was studied using different
forms for the parental fitness functions. In
the second series of experiments (Phase 2),
the organism’s behavior was studied using dif-
ferent fitness, reproduction, and mutation
methods. And in the third series of experi-
ments (Phase 3), the organism’s behavior was
studied using different rates of mutation. Tak-
en together, these experiments constituted a
qualitative and quantitative parametric study
of the behavior of the digital organism on RI
schedules.
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METHOD

Subject

The subject was a digital organism with a
repertoire of 100 behaviors defined by inte-
gers ranging from 0 through 1023, parti-
tioned into four behavioral classes. Class 1
consisted of the 41 behaviors with integer val-
ues from 0 through 40. Class 2 consisted of
the 471 behaviors with integer values from 41
through 511. Class 3 consisted of the 41 be-
haviors with integer values from 512 through
552. Class 4 consisted of the 471 behaviors
with integer values from 553 through 1023.
The proportion of behaviors falling into a
class at a given moment constituted the prob-
ability that the organism would emit an in-
stance of the class at that moment. A behavior
from one of the four classes was emitted at
each moment of time. The baseline proba-
bilities of emission for the four classes were
0.04, 0.46, 0.04, and 0.46, respectively.

Apparatus and Materials

Software was written and experiments were
conducted on computers using the Win-
dowst XP Professional operating system.
Computers had at least 498-MHz Intelt Pen-
tiumt III processors, 184 MB of RAM, and 11
GB of hard disk space. Software was written
in VB. NET.

Procedure

Phase 1. Fitness was defined by the mid-
point fitness method. Five experiments were
conducted using exponential parental fitness
functions (Equation A7 in the Appendix)
with average parental fitnesses of 10, 20, 40,
100, and 200. Five experiments were con-
ducted using linear parental fitness functions
(Equation A4 in the Appendix) with average
parental fitnesses of 10, 20, 40, 100, and 200.
And five experiments were conducted using
uniform parental fitness functions (Equation
2) with average parental fitnesses of 10, 20,
40, 100, and 200. As explained in the Appen-
dix, the exponential, linear, and uniform pa-
rental fitness functions are uniquely specified
by their means. In all experiments, the bit-
wise reproduction method was used to gen-
erate child behaviors, and the Gaussian mu-
tation method with a standard deviation of 25
was used to produce mutants of 3% of the
behaviors in each generation. If the mutant

behavior had an integer value greater than
1023, it was wrapped to the low end of the
integer-value range. For example, a mutant
with an integer value of 1024 had its value
changed to 0. Analogously, if the mutant be-
havior had an integer value less than 0, it was
wrapped to the high end of the integer-value
range.

In all experiments, Class 1 constituted the
target class of behaviors, analogous to the
class of lever pressing behaviors in an operant
chamber. Class 1 behaviors were selected
(i.e., reinforced) on 9, 10, or 11 RI schedules
with mean interreinforcement intervals of 1,
2, 3, 5, 8, 10, 18, 25, 68, 112, or 200 time ticks.
Before being placed on a new RI schedule,
the digital organism’s Class 1 behaviors were
reinforced on a fixed ratio (FR) 1 schedule
until 25 reinforcements were obtained.

For each condition, the computational
model operated according to the following
14-step pseudocode:

1. One hundred behaviors with integer val-
ues from 0 through 1023 were selected at
random, where each integer value was
equally likely to be chosen. This consti-
tuted the digital organism’s initial reper-
toire.

2. The 100 behaviors were grouped into the
classes defined above and the probability
that a behavior would be emitted from
each class was calculated.

3. Based on the calculated probabilities, a
behavior from one of the classes was
emitted.

4. If the emitted behavior belonged to Class
1, the RI schedule was consulted to de-
termine if reinforcement was available. If
so, the behavior was reinforced and the
computation proceeded to Step 5. If re-
inforcement was not available, or if the
emitted behavior did not belong to Class
1, then the computation proceeded to
Step 10.

5. The fitness of each behavior in the rep-
ertoire was calculated using the midpoint
fitness method.

6. A fitness value was selected at random
from the parental fitness function, using
the method described in the Appendix,
and the repertoire was searched for a be-
havior with that fitness value. If a quali-
fying behavior was found, then it was des-
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ignated the father behavior. If a
qualifying behavior was not found, then
a new fitness value was selected at ran-
dom from the parental fitness function,
and the repertoire was searched again for
a behavior with the new fitness value.
This process continued until a qualified
father behavior was found. The process
was then repeated to find a mother be-
havior, which was required to be distinct
from the father behavior.

7. The mother and father behaviors were
mated using the bitwise reproduction
method, which generated a child behav-
ior.

8. Steps 6 and 7 were repeated until 100
child behaviors were produced. These be-
haviors constituted the new generation.
Notice that a behavior may have been a
parent more than once, and may have
had more than one mate.

9. The computation proceeded to Step 13.
10. A father behavior and a distinct mother

behavior were chosen at random from
the repertoire.

11. The mother and father behaviors were
mated using the bitwise reproduction
method, which generated a child behav-
ior.

12. Steps 10 and 11 were repeated until 100
child behaviors were generated. These
behaviors constituted the new genera-
tion. Notice that a behavior may have
been a parent more than once, and may
have had more than one mate.

13. Three percent of the behaviors in the
new generation, selected at random, were
replaced by mutants, using the Gaussian
mutation method with a standard devia-
tion of 25.

14. Time advanced one tick, and the com-
putation returned to Step 2.

Phase 2. The midpoint fitness, bitwise re-
production, and Gaussian mutation methods
used in Phase 1 were designated as standards.
In Phase 2 the standard methods were varied
singly, and then in combinations, in six pairs
of experiments. In two experiments using dif-
ferent forms for the parental fitness function,
the specific individual fitness method was
used, along with the standard reproduction
and mutation methods. In two experiments
using different forms for the parental fitness

function, the slicewise reproduction method
was used, along with the standard fitness and
mutation methods. In two experiments using
different forms for the parental fitness func-
tion, the bit-flip mutation method was used,
along with the standard fitness and reproduc-
tion methods. And in two experiments using
different forms for the parental fitness func-
tion, the random individual mutation meth-
od was used, along with the standard fitness
and reproduction methods. In two additional
experiments the specific individual fitness,
slicewise reproduction, and random individ-
ual mutation methods were used in combi-
nation. And finally, in two experiments the
midpoint fitness, slicewise reproduction, and
bit-flip mutation methods were used in com-
bination.

Class 1 constituted the target class of be-
haviors, and was reinforced on the 11 RI
schedules used in Phase 1. Before being
placed on a new RI schedule, the digital or-
ganism’s Class 1 behaviors were reinforced on
an FR 1 schedule until 25 reinforcements
were obtained. The computation executed
the 14-step pseudocode used in Phase 1 with
the appropriate fitness method substituted in
Step 5, the appropriate reproduction method
substituted in Steps 7 and 11, and the appro-
priate mutation method substituted in Step
13.

Phase 3. The standard fitness, reproduc-
tion, and mutation methods from Phase 1,
along with a linear parental fitness function,
were used in all Phase 3 experiments. All pos-
sible combinations of five mean parental fit-
ness values and five mutation rates were stud-
ied in these experiments. The five mean
parental fitness values were 10, 20, 40, 100,
and 200; the five mutation rates were 1, 5, 10,
20, and 50%. The standard deviation for the
Gaussian mutation method was 25 in all cases.

Class 1 constituted the target class of be-
haviors, and was reinforced on the 11 RI
schedules used in Phase 1. Before being
placed on a new RI schedule, the digital or-
ganism’s Class 1 behaviors were reinforced on
an FR 1 schedule until 25 reinforcements
were obtained. The computation executed
the 14-step pseudocode used in Phase 1, with
the appropriate mutation rate substituted in
Step 13.

In all phases, Class 1 behaviors and rein-
forcements were recorded in 500-tick blocks.
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Table 1

Mean and maximum parental fitnesses, number of generations run per RI schedule (in thou-
sands), parameters of the best-fitting hyperbola, and the proportions of variance accounted
for (VAC) by the hyperbola (Hyp), an asymptotic exponential (A Exp), an asymptotic power
function (A Power), and a ramp function for Phase 1 experiments. Asterisks mark fits for
which there was a statistical indication of nonrandom residuals.

Experi-
ment

Parental
fitness

Mean Max

Genera-
tions

(000s)

Hyperbola
parameters

k re

Proportion VAC

Hyp A Exp A Power Ramp

Exponential parental fitness function
E160
E66
E67
E68
E70

10
20
40

100
200

`
`
`
`
`

20
20
20
20
20

480
413
320
208
148

19
18
13
11
13

1.00*
1.00
1.00
1.00*
0.99

0.98*
0.98*
0.97*
0.98*
0.98*

0.99
0.98*
0.98*
0.97*
0.98

0.94*
0.91*
0.89*
0.88*
0.92*

Linear parental fitness function
E72
E75
E76
E77
E78

10
20
40

100
200

30
60

120
300
600

5
20
20
20
30

471
331
251
136
78

19
12
11
7
7

1.00*
1.00
1.00
0.99
0.98

0.97*
0.97*
0.96*
0.95
0.96

0.99
0.96*
0.92*
0.92*
0.93*

0.91*
0.90*
0.63*
0.81
0.83*

Uniform parental fitness function
E73
E74

10
20

20
40

20
20

479
269

20
9

0.99*
1.00

0.96*
0.99*

0.99
0.91*

0.89*
0.92*

E80
E163
E82

40
100
200

80
200
400

20
20

30–45

192
90
35

6
5
2

1.00
0.98
0.91

0.97*
0.94
0.91*

0.83*
0.74*
0.91

0.91*
0.86*
0.80

Median 1.00 0.97 0.96 0.89

Sessions continued at each RI value until the
mean number of emissions of Class 1 behav-
ior per 500-tick block, excluding the first
block, was essentially stationary, that is, its
standard error was small.

RESULTS

Phase 1

Emission and selection frequencies in
Phase 1 were averaged over 10 to 90 500-tick
blocks, which represented 5,000 to 45,000
generations of behavior on each RI schedule.
Equation 1 was fitted to the data from the 15
Phase 1 experiments by the method of least
squares. The results are listed in Table 1,
along with the mean and maximum parental
fitness for each experiment, and the number
of generations run for each RI schedule, ex-
cluding the first 500 generations, which were
discarded. Selection and emission frequen-
cies were averaged over the number of gen-
erations listed in the table. The parameters
of the hyperbola and the proportion of vari-
ance it accounted for are listed in columns 5,

6, and 7 of the table. Evidently, the hyperbola
accounted for essentially all of the variance in
the computational data. The median propor-
tion of variance accounted for by the hyper-
bola across the 15 experiments was 1.00.

Plots of the mean number of target-class
emissions per 500-tick block (response rate)
versus the mean number of selections per
500-tick block (reinforcement rate) on each
RI schedule are shown in Figure 1 for the
three experiments using exponential, linear,
and uniform parental fitness functions with a
mean parental fitness of 40 (Experiments
E67, E76, and E80). Averages over fewer
blocks produce scatter more typical of the be-
havior of a biological organism. For the large
numbers of generations used in these exper-
iments, however, the data converged on the
specific form shown by the smooth curves in
the figure, which are plots of the best-fitting
hyperbolas.

The randomness of the deviations from the
hyperbolic form was tested by the method
recommended by Reich (1992). Three tests
were conducted: a proportion procedure test-
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Fig. 1. Plots of the digital organism’s response rate
versus reinforcement rate (filled circles) on RI schedules
using exponential (top graph), linear (middle graph),
and uniform (bottom graph) parental fitness functions
with means of 40 (Experiments E67, E76, and E80). The
smooth curves are the best-fitting hyperbolas.

ed the obtained number of positive residuals
for randomness, a runs procedure tested the
number of runs of residuals with the same
sign for randomness, and a neighborhood
correlation procedure tested the correlation
of nearby residuals for randomness. If a set
of residuals failed one or more of these tests,
the proportion of variance accounted for was
marked with an asterisk in Table 1. As shown
in the table, there was an indication of non-
random residuals for 4 of the 15 fits of Equa-

tion 1. The randomness of the residuals for
the entire collection of hyperbolic fits in Ta-
ble 1 can be tested by calculating the bino-
mial probability of concluding that 4 or more
of 15 sets of residuals are not random, given
the known probability of falsely concluding
that a set of residuals is not random (Type I
error). This test is explained in detail in the
Appendix. It yielded a binomial probability of
0.16, which is consistent with the conclusion
that the residuals for this collection of fits
were random.

To test the uniqueness of the hyperbolic
description of the computational data, three
additional function forms were fitted to the
data from each experiment. These were an
asymptotic exponential,

R 5 a(1 2 e2br),

an asymptotic power function,

R 5 a(1 2 r2b),

and a so-called ramp function,

 a
br 0 # r # bR 5 .aa r .

b

For all three of these two-parameter equa-
tions, R and r represent response and rein-
forcement rates, respectively, a is the asymp-
tote of the equation (or the upper limit in
the case of the ramp), and b governs the ra-
pidity with which the function approaches its
asymptote or upper limit. The asymptotic ex-
ponential and asymptotic power functions
have differential properties that are similar to
those of a hyperbola. The ramp function,
originally described by Beardsley and McDow-
ell (1992), is piecewise continuous and con-
sists of a line with slope, b, starting at the or-
igin, and a horizontal line, R 5 a, starting at
reinforcement rate, a/b. This ramp function
provides the simplest two-parameter descrip-
tion of data that increase from zero and then
level off. Any more complicated form must
provide a better description of the data than
a ramp function to be considered seriously.

The proportions of variance accounted for
by least squares fits of the asymptotic expo-
nential, the asymptotic power function, and
the ramp function are listed in columns 8, 9,
and 10 of Table 1. Across all experiments, the
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asymptotic exponential accounted for a me-
dian of 97% of the variance, the asymptotic
power function accounted for a median of
96% of the variance, and the ramp function
accounted for a median of 89% of the vari-
ance, compared to a median of 100% of the
variance accounted for by Equation 1. Wil-
coxon matched-pairs signed-ranks tests con-
firmed that the hyperbola accounted for
more variance than each of the other func-
tion forms (T 5 0 and p 5 0 to three decimal
places for each of the three comparisons).

The residuals for the fits of the three ad-
ditional function forms were tested for ran-
domness as described above. If the residuals
failed one or more of the three tests, the rel-
evant proportion of variance accounted for
was marked with an asterisk in Table 1. As
shown in the table, there was a statistical in-
dication of nonrandom residuals for 12 of the
15 fits of the asymptotic exponential, 10 of
the 15 fits of the asymptotic power function,
and 13 of the 15 fits of the ramp function.
The binomial test described in the Appendix
confirmed that the sets of residuals for all
three additional function forms were not ran-
dom (the binomial probability was zero to
three decimal places for all three sets).

These results show that the hyperbolic
form of Equation 1 provides a precise, robust,
and unique description of the computational
data. The description is precise inasmuch as
it accounts for essentially all the variance of
the computational data, leaving only random
residuals. It is robust inasmuch as it describes
the behavior of digital organisms using dif-
ferent parental fitness function forms, and
different mean parental fitnesses. And it is
unique inasmuch as similar function forms
account for significantly less variance, and
leave nonrandom residuals.

The values of k and re in Table 1 show that
these parameters varied systematically with
the form of the parental fitness function, and
with the mean fitness of each parental fitness
function. For a given mean fitness, both k and
re tended to decrease from the most restric-
tive (exponential) to the least restrictive (uni-
form) form of the parental fitness function.
A form is more restrictive if it favors fitter
parents. In addition, for a given function
form, both k and re tended to decrease from
the most restrictive mean fitness (10) to the
least restrictive mean fitness (200). Again,

mean parental fitness is more restrictive if it
favors fitter parents.

Phase 2

Emission and selection frequencies in
Phase 2 were averaged over 10 to 40 500-tick
blocks, which represented 5,000 to 20,000
generations of behavior on each RI schedule.
Equation 1 was fitted to the data from the 12
Phase 2 experiments by the method of least
squares. The results are listed in Table 2,
along with the form and mean of the parental
fitness function, and the number of genera-
tions run for each RI schedule, excluding the
first 500 generations, which were discarded.
Selection and emission frequencies were av-
eraged over the number of generations listed
in the table. In the first eight Phase 2 exper-
iments, a single component of the evolution-
ary algorithm was changed. For example, the
first two experiments in the table were the
same as the corresponding experiments in
Table 1, except that the specific individual fit-
ness method was used instead of the mid-
point fitness method. In the second two ex-
periments listed in Table 2, the slicewise
rather than the bitwise reproduction method
was used. In the third pair of experiments,
the bit-flip rather than the Gaussian mutation
method was used. And in the fourth pair of
experiments, the random individual rather
than the Gaussian mutation method was
used. In the remaining four Phase 2 experi-
ments, various combinations of standard and
nonstandard fitness, reproduction, and mu-
tation methods were used.

The parameters of the best-fitting hyper-
bola and the proportion of variance it ac-
counted for are listed in columns 4, 5, and 6
of Table 2. As was the case for the Phase 1
data, the hyperbola accounted for virtually all
the variance in the computational data. The
randomness of the deviations from the hy-
perbolic fits was tested as described earlier.
There were no statistical indications of non-
random residuals for the hyperbolic fits.

As before, an asymptotic exponential, an
asymptotic power function, and a ramp func-
tion were also fitted to the Phase 2 data by
the method of least squares. The proportions
of variance accounted for by these function
forms are listed in columns 7, 8, and 9 of
Table 2. The asymptotic exponential account-
ed for a median of 98% of the variance, the
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Table 2

Parental fitness function form and mean, number of generations run per RI schedule (in
thousands), parameters of the best-fitting hyperbola, and the proportions of variance account-
ed for (VAC) by the hyperbola (Hyp), an asymptotic exponential (A Exp), an asymptotic
power function (A Power), and a ramp function for Phase 2 experiments. Nonstandard fitness,
reproduction, and/or mutation methods are given in the spanner headings. Asterisks mark
fits for which there was a statistical indication of nonrandom residuals.

Experi-
ment

Parental
fitness function
form and mean

Genera-
tions

(000s)

Hyperbola
parameters

k re

Proportion VAC

Hyp A Exp A Power Ramp

Specific individual fitness
E174
E172

Linear 40
Uniform 40

20
20

280
227

13
9

0.99
0.99

0.96*
0.96*

0.99
0.98

0.71*
0.82*

Slicewise reproduction
E144
E175

Exponential 20
Uniform 20

20
20

417
270

15
7

1.00
0.99

0.98*
0.98

0.98*
0.97*

0.85*
0.91*

Bit-flip mutation
E143
E176

Exponential 40
Linear 40

20
20

321
254

8
6

1.00
1.00

0.98*
0.97*

0.98
0.99

0.90*
0.81*

Random individual mutation
E178
E179

Exponential 40
Linear 40

5
20

339
259

36
31

1.00
1.00

0.99*
0.99*

0.93*
0.94*

0.91*
0.68*

Specific individual fitness, slicewise reproduction, random individual mutation
E188
E186

Exponential 40
Linear 40

5
20

386
281

39
29

1.00
1.00

0.99*
0.99*

0.93*
0.96*

0.87*
0.68*

Midpoint fitness, slicewise reproduction, bit-flip mutation
E191
E189

Exponential 40
Linear 40

20
20

334
252

8
6

0.99
1.00

0.97*
0.97*

0.88*
0.81*

0.89*
0.81*

Median 1.00 0.98 0.97 0.84

asymptotic power function accounted for a
median of 97% of the variance, and the ramp
function accounted for a median of 84% of
the variance, compared to a median of 100%
of the variance accounted for by the hyper-
bola. Wilcoxon matched-pairs signed-ranks
tests confirmed that the hyperbola accounted
for more variance than each of the other
function forms (T 5 0 and p 5 0 to two dec-
imal places for each of the three compari-
sons).

The residuals for the fits of the three ad-
ditional function forms were tested for ran-
domness as described above. If the residuals
failed one or more of the three tests, the rel-
evant proportion of variance accounted for
was marked with an asterisk in Table 2. There
was a statistical indication of nonrandom re-
siduals for 11 of the 12 fits of the asymptotic
exponential, 8 of the 12 fits of the asymptotic
power function, and all 12 fits of the ramp
function. The binomial test described in the
Appendix confirmed that the sets of residuals

for each of the three additional function
forms were not random (the binomial prob-
ability was zero to at least three decimal plac-
es for each form).

The results from Phase 2 show that the pre-
cision, robustness, and uniqueness of the hy-
perbolic description of the computational
data extends to different methods of imple-
menting the fitness, reproduction, and mu-
tation components of the evolutionary algo-
rithm.

Phase 3

Emission and selection frequencies in
Phase 3 were averaged over 10 to 40 500-tick
blocks, which represented 5,000 to 20,000
generations of behavior on each RI schedule.
Equation 1 was fitted to the data from these
experiments by the method of least squares.
The results are listed in Table 3, along with
the mean of the linear parental fitness func-
tion, the mutation rate, and the number of
generations run for each RI schedule, exclud-
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Table 3

Mutation rate, number of generations run per RI schedule (in thousands), parameters of the
best-fitting hyperbola, and the proportions of variance accounted for (VAC) by the hyperbola
(Hyp), an asymptotic exponential (A Exp), an asymptotic power function (A Power), and a
ramp function for Phase 3 experiments. Data for E72, E75, E76, E77, and E78 are from
Phase 1. The mean parental fitness of the linear parental fitness function is given in the
spanner headings. Asterisks mark fits for which there was a statistical indication of nonrandom
residuals.

Experi-
ment

Mutation
rate (%)

Genera-
tions

(000s)

Hyperbola
parameters

k re

Proportion VAC

Hyp A Exp A Power Ramp

Linear 10 parental fitness function
E196
E72
E197
E198
E199
E210

1
3
5

10
20
50

20
20
5
5
5
5

474
471
477
472
448
316

7
19
31
54
90

130

0.99*
1.00*
0.99*
1.00
1.00
1.00

0.93*
0.97*
0.97*
0.98
0.99*
0.99

0.84*
0.99
0.97*
0.91*
0.81*
0.71*

0.85*
0.91*
0.90*
0.93*
0.92*
0.97*

Linear 20 parental fitness function
E192
E75
E193
E194
E195
E211

1
3
5

10
20
50

20
20
20
5
5
5

344
331
338
338
330
219

5
12
20
37
66
83

0.99
1.00
1.00*
1.00
1.00
0.99*

0.97*
0.97*
0.97*
0.99*
0.99*
0.99*

0.71*
0.96*
0.98*
0.94*
0.86*
0.78*

0.93*
0.90*
0.87*
0.91*
0.94*
0.92*

Linear 40 parental fitness function
E182
E76
E183
E184
E185
E212

1
3
5

10
20
50

20
20
20
5

20
5

259
251
250
244
230
148

4
11
16
29
50
60

1.00
1.00
0.99*
1.00
1.00*
1.00

0.95*
0.96*
0.96*
0.98*
0.99*
0.99

0.56*
0.92*
0.99
0.96*
0.88*
0.84*

0.89*
0.63*
0.89*
0.81*
0.66*
0.85*

Linear 100 parental fitness function
E200
E77
E201
E202
E203
E209

1
3
5

10
20
50

20
20
20
20
5
5

134
136
140
137
116
78

3
7

11
21
28
36

0.96
0.99
1.00
0.99
1.00
0.99*

0.96
0.95
0.97*
0.98*
0.99*
0.98*

0.97
0.92*
0.99
0.97*
0.94*
0.87*

0.90
0.81
0.89*
0.89*
0.95*
0.93

Linear 200 parental fitness function
E204
E78
E205
E206
E207
E208

1
3
5

10
20
50

20
20
20
20
20
5

70
78
81
80
74
49

2
7

10
17
28
36

0.68
0.98
0.98
0.99
1.00
0.97

0.53
0.96
0.96
0.98*
0.99*
0.97

0.61
0.93*
0.97
0.97*
0.92*
0.86*

0.40
0.83*
0.80*
0.89*
0.93*
0.85*

Median 1.00 0.97 0.92 0.89

ing the first 500 generations, which were dis-
carded. The table includes Phase 1 results
from E72, E75, E76, E77 and E78. Selection
and emission frequencies were averaged over
the number of generations listed in the table.
The parameters of the best-fitting hyperbola
and the proportion of variance it accounted
for are listed in columns 4, 5, and 6 of Table
3. Again, the hyperbola accounted for virtu-

ally all of the variance in the computational
data. The randomness of the deviations from
the hyperbolic fits was tested as before, and
fits for which there was a statistical indication
of nonrandom residuals are marked with as-
terisks in Table 3. Seven of the 25 Phase 3 fits
are so marked. The binomial test described
in the Appendix indicated that the residuals
for this set of fits were random (the binomial
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probability was 0.06; Phase 1 data repeated in
Table 3 were excluded from the analysis).

An asymptotic exponential, an asymptotic
power function, and a ramp function were
also fitted to the Phase 3 data by the method
of least squares. The proportions of variance
accounted for by these function forms are
listed in columns 7, 8, and 9 of Table 3. The
asymptotic exponential accounted for a me-
dian of 97% of the variance, the asymptotic
power function accounted for a median of
92% of the variance, and the ramp function
accounted for a median of 89% of the vari-
ance, compared to a median of 100% of the
variance accounted for by the hyperbola. Wil-
coxon matched-pairs signed-ranks tests con-
firmed that the hyperbola accounted for
more variance than each of the other func-
tion forms (T 5 0 and p 5 0 to at least three
decimal places for the asymptotic exponential
and ramp comparisons; T 5 2 and p 5 0 to
at least three decimal places for the asymp-
totic power function comparison; the Phase 1
data repeated in Table 3 were excluded from
these analyses).

The residuals for the fits of the three ad-
ditional function forms were tested for ran-
domness as before. If the residuals failed one
or more of the three tests, the relevant pro-
portion of variance accounted for was
marked with an asterisk in Table 3. There was
a statistical indication of nonrandom residu-
als for 18 of the 25 fits of the asymptotic ex-
ponential, 20 of the 25 fits of the asymptotic
power function, and 22 of the 25 fits of the
ramp function. The binomial test described
in the Appendix confirmed that the sets of
residuals for all three additional function
forms were not random (the binomial prob-
ability was zero to at least three decimal plac-
es for all three forms; Phase 1 data repeated
in Table 3 were excluded from these analy-
ses).

The results from Phase 3 show that the pre-
cision, robustness and uniqueness of the hy-
perbolic description of the computational
data holds over a range of mutation rates, at
a variety of mean parental fitnesses.

The values of k and re in Table 3 show that
these parameters varied systematically with
mutation rate. At each mean parental fitness,
k decreased moderately and re increased
markedly as mutation rate increased. The de-
cline in k was gradual over most of the range

of mutation rates, and then fell more sub-
stantially at the highest rate.

Parameters of the Hyperbola

The effect of mutation rate on k and re was
different from the effect of mean parental fit-
ness on k and re that was observed in Phase 1
and is summarized in Table 1. Changes in
each of these variables affected both param-
eters, but changes in mean parental fitness
affected k more strongly than re, whereas
changes in mutation rate affected re more
strongly than k. In addition, changes in mean
parental fitness caused k and re to change in
the same direction (both decreased with in-
creasing mean parental fitness), whereas
changes in mutation rate caused k and re to
change in opposite directions.

All of these effects on k and re can be seen
in Figure 2, which is a plot of the ks against
the res from Table 3 (filled circles). The plot
produces what may be described as a fan with
spokes that radiate outward from near the or-
igin (solid lines) and arcs that sweep through
the first quadrant from the y- toward the x-
axis (dashed lines). Percentages across the
top edge of the fan in Figure 2 are the mu-
tation rates associated with each spoke. Num-
bers along the right edge of the fan are the
mean parental fitness values associated with
each arc. Traveling outward along a spoke
corresponds to decreasing (and hence mak-
ing more restrictive) the mean parental fit-
ness at a constant mutation rate. As the
spokes sweep through the quadrant, muta-
tion rate increases from 1% to 50%. Hence
traveling along an arc from left to right cor-
responds to increasing the mutation rate
(and hence diluting the effect of selection)
at a constant mean parental fitness. Note that,
except for the highest mutation rates (the
rightmost spokes), traveling outward along a
spoke results in a relatively large increase in
k and a relatively small increase in re. This is
the effect of decreasing the mean parental
fitness at a constant mutation rate. Traveling
from left to right along an arc results in a
relatively small decrease in k and a relatively
large increase in re, except at the highest mu-
tation rate, where k decreases markedly while
re continues to increase. This is the effect of
increasing the mutation rate at a constant
mean parental fitness.
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Fig. 2. Plots of k versus re from Table 3, which are the parameters produced using a linear parental fitness function
with a range of mean fitnesses (listed along the right edge of the parameter fan) and a range of mutation rates
(listed along the top edge of the fan). Traveling along a spoke (solid line) outward from near the origin corresponds
to a decreasing, and hence more restrictive, mean parental fitness at a constant mutation rate. Traveling along an
arc (dashed line) from the y-axis toward the x-axis corresponds to an increasing, and hence more diluting, mutation
rate at a constant mean parental fitness.

DISCUSSION

In the absence of reinforcement, the digi-
tal organism distributes its behavior accord-
ing to the baseline probabilities used in its
design. Reinforcement can be conceived of as
exerting selection pressure against this base-
line and pulling the distribution toward the
target class of behaviors. Richer RI schedules
exert stronger selection pressure than leaner
RI schedules. At some point, an RI schedule
reaches its maximum effect, in which there is
a diffusion-like equilibrium between the RI
schedule’s tendency to favor the target class
of behaviors and the organism’s tendency to
return to the baseline distribution. Remark-
ably, as shown by the experiments reported
in this article, these equilibrium points trace
out a hyperbola. Moreover, the hyperbolic
form of the emissions versus selections func-
tion in these experiments was precise and
unique, did not depend on the form of the
parental fitness function or on its mean, did
not depend on the specific method of imple-

menting the fitness, reproduction, or muta-
tion components of the evolutionary algo-
rithm, and did not depend on the mutation
rate. Hence the hyperbolic form was a robust
emergent property of the rules specified by
the evolutionary algorithm.

It is clear that the components of the evo-
lutionary algorithm used in these experi-
ments are sufficient to produce a hyperbolic
emissions versus selections function. But it is
also the case that they are necessary. This is
obvious for the fitness method, the parental
fitness function, and the reproduction meth-
od. In order to implement selection at all, a
fitness criterion must be defined, parents
must be chosen on the basis of this criterion,
and the parents must produce offspring that
resemble themselves. But it is important to
recognize that mutation is also necessary. In
the absence of selection, the digital organ-
ism’s behavior wanders from class to class and
may remain in a particular class for many
generations. These sustained response bouts
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occur when the behaviors in the repertoire
are fairly uniform, that is, roughly equal in
integer value. New generations produced by
randomly selected uniform parents will them-
selves be fairly uniform, and hence behaviors
from the same class will be emitted repeat-
edly. Mutants, however, occasionally disturb
this uniformity and may participate in pro-
ducing the next generation. When they do,
the disturbance may build upon itself and
pull the organism’s behavior into another
class. As a result, the distribution of behavior
in the various classes matches the baseline
probabilities over time, even though the or-
ganism may show sustained bouts of respons-
es from specific classes. If there are no mu-
tants, however, then when the inevitable
sustained bouts of responding occur, there is
nothing to disturb the uniform behavior and
so responding gets stuck in that class for all
future generations. This same effect occurs in
the presence of selection. If there are no mu-
tants, then the organism eventually allocates
either all of its behavior to the target class,
regardless of the RI schedule value, or none
of its behavior to the target class. If its behav-
ior is uniformly from the target class, then
the behavior can never vary enough to break
out of the class, even though reinforcement
may be infrequent. If the organism’s behavior
is uniformly from a class other than the target
class, then the behavior will never vary
enough to come into contact with reinforce-
ment, regardless of how frequently it may be
scheduled. Hence mutation is necessary in
order to obtain something other than an all-
or-nothing allocation of behavior to the tar-
get class under the selection pressure of an
RI schedule.

Although the specific method of imple-
menting the components of the evolutionary
algorithm in these experiments was not crit-
ical, many methods of implementation were
not tested. One example is asexual reproduc-
tion. It may be worthwhile to study this and
other methods of implementation, but the
critical finding of the present experiments is
that the principle of Darwinian selection by
consequences, rather than any specific imple-
mentation of it, is responsible for the hyper-
bolic form of the emissions versus selections
function.

It may seem that the form found in these
experiments is somehow inherent in the low-

level rules of selection, but this is not likely
to be the case. The opposing forces of selec-
tion on the one hand, and random repro-
duction under nonreinforcement and muta-
tion on the other, may generally produce
larger emission frequencies at higher selec-
tion pressures, but it is not clear that the form
of this effect should be precisely hyperbolic.
Nor is it clear that the form should remain
hyperbolic when the details of the low-level
rules are changed. In the absence of an ob-
vious connection between the low-level rules
and the hyperbolic form, and given that dif-
ferent versions of the rules produce the same
hyperbolic form, it seems unlikely that a con-
nection exists. Instead, the hyperbolic form
appears to be a genuine emergent property
of the joint action of the component princi-
ples of the evolutionary algorithm.

The algorithm developed here bears some
similarity to the genetic algorithms studied by
Holland (1992, 1995, 1998) and others as
models of so-called complex adaptive systems,
such as brains, businesses, cities, economies,
ecosystems, immune systems, and organisms.
The evolutionary algorithm lacks many of the
complexities of Holland’s genetic algorithms,
but it can be expanded into a Holland-like
algorithm by adding appropriate structures
and functions. This effort might be worth
pursuing, especially in attempts to extend the
computational model to more complex cases,
such as behavior under stimulus control, or
social behavior, in which the repertoires of
separate organisms interact.

The hyperbolic form of the emissions versus
selections function did not depend on details
of the evolutionary algorithm’s low-level
rules, but at least some of these details had
profound effects on the parameters of the hy-
perbola. Consider first the form and mean of
the parental fitness function. As can be seen
from the data in Table 1, both variables had
the same effect on k and re. As the form or
mean of a parental fitness function became
more restrictive, that is, as it came to favor
fitter parents, both k and re increased. Muta-
tion rate also affected k and re, but in a dif-
ferent way. As mutation rate increased, k de-
creased moderately over most of its range,
whereas re increased markedly. The marked
increase in re can be understood by recalling
that this parameter governs the rapidity with
which the hyperbola approaches its asymp-
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tote (McDowell, 1988). Because mutation
counteracts or dilutes the effect of selection,
responding at a given reinforcement rate lies
further from the asymptote as the diluting ef-
fect of mutation increases. Notice that the
form and mean of the parental fitness func-
tion directly affect which parents will be se-
lected for mating, whereas the mutation rate
operates after selection has occurred, and acts
to dilute the effect of selection. Notice also
that the form and mean of the parental fit-
ness function come into play only when se-
lection occurs, whereas mutation affects every
generation of behavior.

Because certain variables, such as reinforc-
er magnitude, are known to affect the param-
eters of Equation 1, it is tempting to associate
these variables with specific features of the
computational model. For example, the cost/
benefit ratio for a particular response/rein-
forcer combination might be represented in
the computational model by a parental fitness
function with a particular form and mean. A
lever press with a given force requirement,
say, that is reinforced by water sweetened with
a given concentration of sucrose, might be
represented by a linear parental fitness func-
tion with a specific mean. Changes in the
quantitative properties of the response/rein-
forcer combination, such as the concentra-
tion of sucrose, would then correspond to
changes in the mean of the parental fitness
function. For example, an increase in sucrose
concentration would reduce the cost/benefit
ratio and hence would be represented by a
lower, more restrictive, mean parental fitness.
Changes in the qualitative properties of the
response/reinforcer combination, such as
substituting chain pulling for lever pressing
as the target behavior, or food for sweetened
water as the reinforcer, might correspond to
changes in the form of the parental fitness
function.

This feature of the computational model
can be examined further by considering the
simpler case of a constant response form but
a variable reinforcer magnitude. As reinforc-
er magnitude increases, the cost/benefit ratio
of the response/reinforcer combination de-
creases, and hence mean parental fitness de-
creases. The data in Table 1 show that as
mean parental fitness decreases (due, in our
hypothetical example, to increasing reinforc-
er magnitude), k increases. This is consistent

with a substantial body of research that shows
that increases in reinforcer magnitude pro-
duce increases in k (Dallery, McDowell, &
Lancaster, 2000; McDowell & Dallery, 1999;
McDowell & Wood, 1984, 1985). Hence these
findings support the idea that mean parental
fitness in the computational model might
represent the cost/benefit ratio of a particu-
lar response/reinforcer combination. If so,
then the computational model predicts a pos-
itive, and approximately linear, relation be-
tween k and re as the cost/benefit ratio chang-
es. This prediction is shown in Figure 2.
Traveling outward along an approximately
linear spoke corresponds to decreasing mean
parental fitness (and hence cost/benefit ra-
tio) at a constant mutation rate.

Some data bearing on this prediction are
provided by Dallery et al. (2000), who studied
rats’ lever pressing reinforced by 0.00, 0.05,
0.10, 0.20, and 0.32 M concentrations of su-
crose in water. Figure 3 shows plots of k versus
re for Dallery et al.’s 7 rats at the five different
concentrations of sucrose, and a plot of k ver-
sus re pooled across rats (bottom right panel).
The vertical error bars represent 6 1 stan-
dard error on k; the horizontal error bars
represent 6 1 standard error on re. The
straight lines in each panel were fitted so as
to minimize the sum of the proportion of un-
explained variance in k and the proportion
of unexplained variance in re, and were con-
strained to pass through the origin (i.e., each
line was fitted with its slope as the only free
parameter). The top number in the bottom
right of each panel is the proportion of vari-
ance in k accounted for by the straight line;
the bottom number is the proportion of var-
iance in re accounted for by the straight line.
Given the large standard errors in this exper-
iment, the relation between k and re for these
rats is consistent with the approximately lin-
ear relation predicted by the computational
model when mean parental fitness is taken to
represent the cost/benefit ratio of a particu-
lar response/reinforcer combination. Need-
less to say, additional empirical and compu-
tational experimentation will be required to
evaluate fully this, and other, features of the
computational model.

Herrnstein (1970) originally derived Equa-
tion 1 by conceptualizing single-alternative
responding as choice between a target alter-
native and other, extraneous, alternatives,
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Fig. 3. Plots of k versus re for Dallery, McDowell, and Lancaster’s (2000) 7 rats, whose lever pressing was reinforced
by five different concentrations of sucrose in water. In the lower right panel the ks and res are pooled across rats.
The horizontal error bars represent 6 1 standard error on re; the vertical error bars represent 6 1 standard error
on k. The slopes of the straight lines, which were constrained to pass through the origin, were selected so as to
minimize the sum of the proportion of unexplained variance in k and the proportion of unexplained variance in re.
The top number in the lower right of each panel is the proportion of variance in k accounted for by the line; the
bottom number is the proportion of variance in re accounted for by the line.
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and this choice was presumed to be governed
by the matching law. According to Herrn-
stein’s account, the parameters of the hyper-
bola represented the maximum amount of
behavior that is possible to emit, k, and the
aggregate rate of reinforcement obtained for
responding on the extraneous alternatives, re.
The results of the computational experiments
reported in this article provide an alternative
to Herrnstein’s matching-based derivation of
Equation 1. They show that Darwinian selec-
tion by consequences is sufficient to produce
Equation 1 and that, according to the com-
putational account, the parameters of the
equation are related in fairly complicated
ways to the low-level rules of selection.

The ability of the computational model to
yield Equation 1 as an emergent property
means that the material operation of a bio-
logical organism responding on RI schedules
must be computationally equivalent to Darwini-
an selection by consequences. As a simple ex-
ample of computational equivalence, consid-
er the process of repeatedly flipping a coin
and recording the sequence of resulting
heads and tails. This process is computation-
ally equivalent to repeatedly drawing a ball
(with replacement) from a bag containing
two white and two black balls, and recording
the sequence of white and black balls pulled
from the bag. And both of these processes are
computationally equivalent to selecting an in-
teger at random from the set, {1, 2, 3, . . . ,
10}, and recording the sequence of integers-
less-than-or-equal-to-5, and integers-greater-
than-5. Hence the success of the computa-
tional model developed here suggests that
whatever specific material events are respon-
sible for an organism’s responding on an RI
schedule, they must be computationally
equivalent to Darwinian selection by conse-
quences. Of course this is strictly the case
only if the outcomes of the computational
model are completely consistent with behav-
ioral phenomena. The ability of the model to
yield Equation 1 as an emergent property,
and to accommodate some of the known re-
lations between the equation’s parameters
and properties of reinforcement, suggest that
it is worth pursuing further as a possible dy-
namic account of behavior.

REFERENCES
Beardsley, S. D., & McDowell, J. J (1992). Application of

Herrnstein’s hyperbola to time allocation of natural-

istic human behavior maintained by naturalistic social
reinforcement. Journal of the Experimental Analysis of Be-
havior, 57, 177–185.

Bentley, P. J. (2002). Digital biology. New York: Simon &
Schuster.

Dallery, J., McDowell, J. J, & Lancaster, J. S. (2000). Fal-
sification of matching theory’s account of single-alter-
native responding: Herrnstein’s k varies with sucrose
concentration. Journal of the Experimental Analysis of Be-
havior, 73, 23–43.

Donahoe, J. W., Burgos, J. E., & Palmer, D. C. (1993). A
selectionist approach to reinforcement. Journal of the
Experimental Analysis of Behavior, 60, 17–40.

Donahoe, J. W., & Palmer, D. C. (1994). Learning and
complex behavior. Boston: Allyn & Bacon.

Donahoe, J. W., Palmer, D. C., & Burgos, J. E. (1997).
The S-R issue: Its status in behavior analysis and in
Donahoe and Palmer’s Learning and complex behavior.
Journal of the Experimental Analysis of Behavior, 67, 193–
211.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-
Smith, A., Parisi, D., & Plunkett, K. Rethinking innate-
ness: A connectionist perspective on development. Cam-
bridge, MA: MIT Press.

Glenn, S. S., & Field, D. P. (1994). Functions of the en-
vironment in behavioral evolution. The Behavior Ana-
lyst, 17, 241–259.

Glenn, S. S., & Madden, G. J. (1995). Units of interaction,
evolution, and replication: Organic and behavioral
parallels. The Behavior Analyst, 18, 237–251.

Herrnstein, R. J. (1970). On the law of effect. Journal of
the Experimental Analysis of Behavior, 13, 243–266.

Herrnstein, R. J. (1982). Melioration as behavioral dy-
namism. In M. L. Commons, R. J. Herrnstein, & H.
Rachlin (Eds.), Quantitative analyses of behavior, Vol. 2:
Matching and maximizing accounts. Cambridge, MA:
Ballinger.

Holland, J. H. (1992). Adaptation in natural and artificial
systems: An introductory analysis with applications to biol-
ogy, control, and artificial intelligence (2nd ed.). Cam-
bridge, MA: MIT Press.

Holland, J. H. (1995). Hidden order: How adaptation builds
complexity. Cambridge, MA: Perseus.

Holland, J. H. (1998). Emergence: From chaos to order. Cam-
bridge, MA: Perseus.

Hull, D. L., Langman, R. E., & Glenn, S. S. (2001). A
general account of selection: Biology, immunology
and behavior. Behavioral and Brain Sciences, 24, 511–
528.

McDowell, J. J (1988). Matching theory in natural human
environments. The Behavior Analyst, 11, 95–109.

McDowell, J. J, & Dallery, J. (1999). Falsification of match-
ing theory: Changes in the asymptote of Herrnstein’s
hyperbola as a function of water deprivation. Journal
of the Experimental Analysis of Behavior, 72, 251–268.

McDowell, J. J, & Wood, H. M. (1984). Confirmation of
linear system theory prediction: Changes in Herrn-
stein’s k as a function of changes in reinforcer mag-
nitude. Journal of the Experimental Analysis of Behavior,
41, 183–192.

McDowell, J. J, & Wood, H. M. (1985). Confirmation of
linear system theory prediction: Rate of change of
Herrnstein’s k as a function of response-force require-
ment. Journal of the Experimental Analysis of Behavior, 43,
61–73.

Press, W. H., Flannery, B. P, Teukolsky, S. A., & Vetterling,



315A COMPUTATIONAL MODEL OF SELECTION BY CONSEQUENCES

W. T. (1989). Numerical recipes: The art of scientific com-
puting. Cambridge, England: Cambridge University
Press.

Rachlin, H., Battalio, R., Kagel, J., & Green, L. (1981).
Maximization theory in behavioral psychology. Behav-
ioral and Brain Sciences, 4, 371–417.

Reich, J. G. (1992). C curve fitting and modeling for scientists
and engineers. New York: McGraw-Hill.

Shimp, C. P. (1992). Computational behavior dynamics:
An alternative description of Nevin (1969). Journal of
the Experimental Analysis of Behavior, 57, 289–299.

Skinner, B. F. (1981). Selection by consequences. Science,
213, 501–504.

Skinner, B. F. (1984). Selection by consequences. Behav-
ioral and Brain Sciences, 7, 477–510.

Smith, T. L. (1983). Skinner’s environmentalism: The
analogy with natural selection. Behaviorism, 11, 133–
153.

Vaughan, W., Jr. (1981). Melioration, matching, and max-
imization. Journal of the Experimental Analysis of Behav-
ior, 36, 141–149.

Wolfram, S. (2002a). A new kind of science. Champaign, IL:
Wolfram Media.

Wolfram, S. (2002b). Cellular automata and complexity.
Cambridge, MA: Perseus.

Received January 8, 2003
Final acceptance May 10, 2004

APPENDIX

Calculating Parental Fitness Functions

A parental fitness function must associate
higher probabilities of being selected for mat-
ing with lower, and hence better, fitness val-
ues. Any form with this general property can,
in principle, be used as a parental fitness
function. In order to implement the parental
fitness function computationally, it is usually
necessary to write it as a probability density
function, and then calculate its cumulative
density function and mean. In practice, it is
usually easier to obtain the cumulative density
function for the desired form first, and then
take its first derivative to obtain the probabil-
ity density function itself, and then finally cal-
culate the mean of the probability density
function.

This process can be illustrated by prepar-
ing a linear parental fitness function. Consid-
er the line,

y 5 2mx 1 b, (A1)

with y-intercept, b, and root (or x-intercept),
b/m. When x 5 0 (i.e., perfect fitness), y 5 b.
As x increases (i.e., as fitness decreases), y de-
clines linearly until it reaches 0 at b/m. We
are not interested in the line beyond this fit-

ness value because behaviors with fitnesses
greater than b/m have no chance of mating.

We can prepare the cumulative density
function for this linear form by calculating
the integral of the line from 0 to x and then
dividing this by the integral of the line from
0 to b/m. The latter integral gives the total
area bounded by the line and the x-axis; the
former gives that part of the total area up to
x. The quotient expresses the area up to x as
a proportion of the total area, and hence rep-
resents the probability of choosing a fitness
of x or better. The numerator and denomi-
nator integrals are

x

F (x) 5 (2mx 1 b) dxnumerator E
0

m 25 2 x 1 bx and
2
b/m

F (x) 5 (2mx 1 b) dxdenominator E
0

2b
5 ,

2m

and their quotient is
2m 2m2P(x) 5 2 x 1 x, (A2)2b b

where P(x) denotes the probability of choos-
ing a fitness of x or better, given the linear
function form.

Equation A2 is the cumulative density func-
tion for the linear form, Equation A1. The
first derivative of Equation A2 gives the linear
density function itself:

2d 2m 2m
p(x) 5 P(x) 5 2 x 1 , (A3)2dx b b

where p(x) is the probability density associ-
ated with a fitness of x. All three equations,
A1, A2, and A3, are of interest only on the
interval,

b
0 # x # ,

m

because behaviors with fitnesses greater than
b/m have no chance of mating.

Before calculating the mean of Equation
A3, it will be helpful to simplify Equations A2
and A3 by noticing that neither equation de-



316 J. J MCDOWELL

pends on the individual values of m and b,
but only on their ratio. If we let

m
5 a,

b

then Equation A3, the linear probability den-
sity function, becomes

2p(x) 5 22a x 1 2a, (A4)

and Equation A2, the cumulative density
function, becomes

2 2P(x) 5 2a x 1 2ax (A5)

for

1
0 # x # .

a

The mean fitness specified by Equation A4
must be

1/a

m 5 x p(x) dxE
0

1/a 12 25 (22a x 1 2ax) dx 5 . (A6)E 3a0

Equations A4, A5, and A6 are the three ex-
pressions that are needed to use a linear pa-
rental fitness function in the computational
model. The procedure used to obtain these
expressions can be applied to any function
form that meets the general requirement stat-
ed earlier, namely, that higher probabilities of
being selected for mating are associated with
lower, and hence better, fitness values.

In addition to the uniform parental fitness
function developed in the text, and the linear
parental fitness function developed here, an
exponential parental fitness function may be
of interest. It is based on the exponential,

y 5 ae2ax,

which is already a probability density func-
tion,

2axp(x) 5 ae , (A7)

defined on the interval,

0 , x , `,

with cumulative density,
2axP(x) 5 1 2 e , (A8)

and mean,

1
m 5 . (A9)

a

It is important to note that the exponential
(Equation A7), linear (Equation A4) and uni-
form (Equation 2, developed in the text) pa-
rental fitness functions depend only on their
means. Hence, by specifying an average pa-
rental fitness, one specifies a unique parental
fitness function, at least for these three forms.

Drawing a Fitness Value at Random

In order to implement the evolutionary al-
gorithm described in this paper it is necessary
to draw fitness values at random from a pa-
rental fitness function. This can be accom-
plished by using the exponential, linear, or
uniform cumulative density function, Equa-
tion A8, A5, or 3. Notice that cumulative
probability density, or probability, is a num-
ber from 0 to 1. Methods for selecting a ran-
dom decimal from 0 to 1 are readily available.
Linear congruential random number gener-
ators like the one described by Press, Flan-
nery, Teukolsky, and Vetterling (1989) are es-
pecially popular. Once a random decimal is
chosen, it is set equal to the right-hand side
of the cumulative density function, which is
then solved for fitness value, x. This fitness
value then represents a random sample from
the parental fitness function.

If we let u(0, 1) represent a random deci-
mal between 0 and 1, then we can use the
three cumulative density functions to write
expressions for obtaining a random fitness
value from a parental fitness function. For the
exponential parental fitness function, a ran-
dom fitness value can be obtained from

x 5 2m ln[1 2 u(0, 1)], (A10)

which is Equation A8 with u(0, 1) substituted
for P(x), and a expressed in terms of m (from
Equation A9). The resulting expression is
then solved for x to obtain Equation A10.

A random fitness value from the linear pa-
rental fitness function can be obtained from

x 5 3m[1 2 Ï1 2 u(0, 1)], (A11)

which is Equation A5 with u(0, 1) substituted
for P(x), and a expressed in terms of m (from
Equation A6). The resulting expression is
then solved for the root that lies on the in-
terval (0, 1/a) to obtain Equation A11.

A random fitness value from the uniform
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parental fitness function can be obtained
from

x 5 2mu(0, 1), (A12)

which is Equation 3 with u(0, 1) substituted
for P(x), and a expressed in terms of m (from
Equation 4). The resulting expression is then
solved for x to obtain Equation A12.

Binomial Test of Residuals for a Collection
of Fits

In the application of Reich’s (1992) meth-
od described in this paper, three tests for ran-
domness, each with an alpha level of 0.05,
were conducted on a given set of residuals. If
a set of residuals failed one or more tests, the
set was said to show nonrandomness. Under
these circumstances, the probability of incor-
rectly asserting that a set of residuals was not
random (Type I error) was not the nominal
alpha level of an individual test, but the cu-
mulative alpha level,

1 2 (1 2 0.05)(1 2 0.05)(1 2 0.05)

5 0.1426,

which is about three times larger than the

nominal alpha level. One can compensate for
this large cumulative error rate by consider-
ing a collection of fits to which Reich’s (1992)
method has been applied (for example, all
the fits in Table 1). Given a hypothetical col-
lection of fits, all with random residuals, one
would expect to falsely conclude that about
14% of the sets of residuals were not random.
One can compare an obtained collection of
fits to this hypothetical collection by calculat-
ing the binomial probability of concluding
that x or more sets of residuals are not ran-
dom (where x is the observed number of sets
determined to be nonrandom by Reich’s
method) in a collection of n fits, all with ran-
dom residuals, where the probability of falsely
concluding that a set of residuals is not ran-
dom is 0.1426. If this binomial probability is
less than or equal to 0.05, then x is too large
to be consistent with the conclusion that the
residuals for the entire collection of fits are
random. But if the binomial probability is
greater than 0.05, then x indications of non-
randomness do not contradict the conclusion
that the residuals are random for the entire
collection of fits.




